

Hybrid pump
 variable & fixed flow
 double & triple
 T6H piston & vane pump

8. Althrough the T6H pumps have fast off stroke compensator reponse, system relief valves are recommended for savety considerations.

MINIMUM & MAXIMUM SPEED, PRESSURE RATINGS

			Theoretical		Maximu	m Speed			Maximum	Pressure		
			Displacement	Minimum	HF-0,HF-1	HF-3, HF-4	HF-0,	HF-2	HF-1, HF	-4, HF-5	н	F -3
Port	Size	Series	Vi	Speed	HF-2	HF-5	Int. ³⁾	Cont.	Int. ³⁾	Cont.	Int. ³⁾	Cont.
			in ³ /rev.	RPM	RPM	RPM	PSI	PSI	PSI	PSI	PSI	PSI
	T6	H20	2.62	600	2600 ¹⁾	1800	4000	3500	2500^{2}	2000^{2}	2500	2000
P1	T6	H29	3.78	600	2400 ¹⁾	1800	3500	3000	2500 ²⁾	2000^{2}	2500	2000
		B02	.35									
		B03	.66									
27		B04	78									
12		B05	.97									
or	В	B06	1.21	600	2600	1800	4350	4000	3500	3000	2500	2000
		B07	1.37									
P3		B08	1.52									
		B10	1.94									
		B12	2.50									
		B15	3.05				4060	3500				
	С	*03	.66	600 (400) (mobile)								
		*05	1.05									
		*06	1.30									
		*08	1.61									
		*10	2.08		2600					2500	2500	2000
		*12	2.26			1800	4000	3500	3500 3000			
		*14	2.81									
		*17	3.56									
		*20	3.89									
		*22	4.29									
P2		*25	4.84									
		*28	5.42		2500		3000	2300		2300		
		*31	6.10									
		014	2.90									
		017	3.55									
		020	4.00									
		024	4.80									
		028	5.50									
	D	031	6.00	600	2400	1800	3500	3000	3000	2500	2500	2000
		035	6.80									
		038	7.30									
		042	8.30									
		045	8.90		2200							
		050	9.64				3000	2300		2300		

 $\overline{* = 0}$: Industrial application = B : Industrial bi-rotational = M : Mobile application

1) See page 11 for max. pressure f(n).

2) Max. pressure HF-1 same as HF-0 and HF-2.

3) See page 6 for conditions.

HF-0, HF-2 = Antiwear Petroleum Base

HF-1 = Non Antiwear Petroleum Base

HF-5 = Synthetic Fluids HF-3 = Water in oil Emulsions

HF-4 = Water Glycols

For further information or if the performance characteristics outlined above do not meet your own particular requirements, please consult your local DENISON Hydraulics office.

PRIMING AT STARTING

At first start operation of the pump, run it at the lowest speed and at the lowest pressure to obtain priming. When a pressure relief valve is used at the outlet it should be backed off to minimize return pressure.

An air bleed off should be provided in the circuit to facilitate the priming.

Never operate pump shaft at top speed and pressure without checking for completion of pump priming, and that the fluid is not aerated.

Always fill the housing of the T6H with oil of circuit prior to start up.

MINIMUM ALLOWABLE INLET PRESSURE (PSI ABSOLUTE)

(Cartridge								
Size	Series	1200	1500	1800	2100	2200	2400	2600	Series
	T6H20	11.6	11.6	11.6	11.6	11.6	12.3	13.1	T6H20
	T6H29	11.6	11.6	11.6	12.5	14.5	15.1		T6H29
	B02								B02
	B03								B03
	B04								B04
	B05								B05
В	B06	11.6	11.6	11.6	11.6	11.6	11.6	11.6	B06
	B07								B07
	B08								B08
	B10								B10
	B12								B12
	B15							12.2	B15
	*03								*03
	*05		11.6	11.6	11.6	11.6	11.6	13.1	*05
	*06								*06
	*08	11.6				11.0			*08
	*10								*10
С	*12						12.3	13.3	*12
	*14								*14
	*17					12.3		13.8	*17
	*20						13.1		*20
	*22				12.3	13.1		14.2	*22
	*25				13.1	13.8	13.8		*25
	*28					14.2	14.2		*28
	*31				12.3	13.1	14.5		*31
	014								014
	017				11.6	10.0	12.0	14.5	017
	020					12.8	13.8		020
	024				11.9			16.0	025
	028			11.6	12.3	13.3	14.5	17.1	028
D	031	11.6	11.6		13.1	13.8		17.8	031
	035				13.3	14.2	14.8	18.7	035
	038				13.8	14.5	15.2		038
	042					14.8	15.7		042
	045			12.3	14.2	15.2			045
	050				14.8	15.8			050
T6H20	Max. case P	10.0	10.0	10.	4.9	4.9	4.9	4.9	T6H20
T6H29	(PSI relative)	10.0	10.0	10.0	4.9	4.9	4.9		Т6Н29

<u>Vane cartridge</u>: Inlet pressure is measured at inlet flange with petroleum base fluids at viscosity between 60 and 300 SUS. The difference between inlet pressure (at the pump flange) and atmospheric pressure must not exceed 2.9 PSI absolute to prevent aeration. <u>Piston cartridge</u>: Rapid compensation at high speeds can cause severe case spikes. If the pump feeds into a blocked center valve that close quickly, use both case drain ports and direct short case drain lines and a relief valve.

Multiply absolute pressure by 1,25 for HF-3, HF-4 fluids. by 1,35 for HF-5 fluid.

by 1,10 for ester or rapeseed base.

GENERAL CHARACTERISTICS

	Mounting standard	Weight without connector and	Moment of inertia	SAE 4 bolts J518c ISO/DIS 6162-1 or 6162-2				
		bracket - Lbs	lb. in ²	Suction	Pressure P1	Pressure P2	Pressure P3	
T6H20B	SAE J744c	81.6	14.6					
T6H20C	180-3019-1 - SAE B 101-2	81.6	19.9	2"1/2		3/4" or 1"		
T6H29B		108.0	21.9		11/4			
T6H29C	SAE J744c ISO-3019-1 - SAE C	108.0	23.2					
T6H29D		132.3	27.5	3"		1"1/4		
T6H29DB	127-2	158.7	28.6				3/4" or 1"	

PUMP SELECTION

CALCULATION

ROUTINE AND EXAMPLE

To resolve	
Volumetric displacement	Vi [in ³ /rev.]
Available flow	qv e[GPM]
Input power	P [HP]

Routine :

1. First calculation $Vi = \frac{231 Q}{r}$

2. Choice Vi of each section of pump immediately greater *P1* = *Piston cartridge T6H20* P2 = Vane cartridge (see tabulation)

then the pump will be 3. Theoretical flow of this pump $q_{Vi} = \frac{Vi \, x \, n}{Vi \, x \, n}$

231

4. Available flow P1 - Consult the curve "Full flow"

P2- Find q_{Vs} leakage function of pressure $q_{Vs} = f(p)$ on curve at 60 or 115 SUS $q_{Ve} = q_{Vi} - q_{Vs}$

5. Theoretical input power *P1* = *Piston section* - *Consult curve*

 $P2 = \frac{qvixp}{r}$ 1714

6. Find Ps hydrodynamic power loss on curve

7. Total input power $P = P(P1) + \hat{P}(P2) + Ps$

8. Results

Performances required - (P1 - P2)							
Requested flow	qve	[GPM]	15.8				
Speed	n	[R.P.M.]	1500				
Pressure	р	[PSI]	2200				

Example :

$$Vi = \frac{231 x 15.8}{1500} = 2.43 \text{ in}^3/\text{rev}.$$

 $P1 = T6H20 Vi = 2.62 in_{2}^{3}/rev.$ P2 = C 014 Vi = 2.81 in³/rev. T6H20C - 014

$P1 = q_{Vi} =$	$\frac{2.62 \times 1500}{231}$	= 17 GPM
$P2 = q_{Vi} =$	$\frac{2.81 \times 1500}{231}$	= 18.2 GPM

P1 = 1500 R.P.M. at 2200PSI = 16.4 GPM T6H20C (page 12): $P2 = q_{VS} = 1.3$ GPM at 2200 PSI, 115 SÚS

 $P2 = q_{Ve} = 18.2 - 1.3 = 16.9 \text{ GPM}$

T6H20C (page 12) P1 - Curve "Inlet horsepower" 1500 R.P.M. at 2200 PSI = 24.1 HP $P2 = \frac{18.2 \times 2200}{1714} = 23.3 \text{ HP}$ 1714

T6H20C (page12) : Ps at 1500 R.P.M., 2200 PSI = 2.0 HP

P = 24.1 + 23.3 + 2.0	= 49.4 HP
T6H20C - 014	
P1	P2
Vi = $2.62 \text{ in}^{3}/\text{rev}$	2.81 in ³ /rev
$q_{Ve} = 16.4 \text{ GPM}$	16.9 GPM
Input horsepower P =	= 49.4 HP

INTERMITTENT PRESSURE RATING

Piston cartridge section (P1) may be operated at an intermittent pressure but 10 % of operation time only, not exceeding 6 successive seconds.

Vane cartridge section units may be operated intermittently at pressures higher than the recommended continuous rating when the time weighted average of pressure is less than or equal to the continuous duty pressure rating.

This intermittent pressure rating calculation is only valid if other parameters; speed, fluid, viscosity and contamination level are respected.

For total cycle time higher than 15 minutes please consult your DENISON Hydraulics representative.

Example : T6H20C - 014 P2 - Duty cycle 4 min. at 4000 PSI 1 min. at 500 PSI 5 min. at 2300 PSI

(4 x 4000) + (1 x 500) + (5 x 2300) = 2800 PSI10

2800 PSI is lower than 3500 PSI allowed as continuous pressure for T6H20C - 014 with HF-0 fluid.

FORMULAS

FLUID POWER FORMULAS

Pump input torque	lbs. in.	$\frac{\text{pressure (PSI) x displacement (in^3/rev)}}{2 \pi x \text{ mech eff.}}$
Pump input power	HP	<u>speed (rpm) x displacement (in³/rev) x pressure (PSI)</u> 395934 x overall eff.
Pump output flow	U.S. gpm	speed (rpm) x displacement (in^3 /rev) x volumetric eff. 231
Fluid motor speed	rpm	$\frac{231 \ x \ flow \ rate (U.S. \ gpm) \ x \ volumetric \ eff.}{displacement(in^3/rev.)}$
Fluid motor torque	lbs. in.	pressure (PSI) x displacement (in ³ /rev) x mech. eff. 2 π
Fluid motor power	HP	<u>speed (rpm) x displacement (in³/rev) x pressure (PSI) x overall eff.</u> 395934

DESCRIPTION

APPLICATION ADVANTAGES

- The high pressure capability to 3500 PSI, in the small envelope, reduces installation costs and provides extended life at reduced pressure.
- The high volumetric efficiency, typically 94%, reduces heat generation, and allows speeds down to 600 RPM (400 RPM for mobile) at full pressure.
- The high mechanical efficiency, typically 94%, reduces energy consumption.
- The wide speed range from 600 RPM to 2600 RPM (400 RPM to 2600 RPM for mobile), combined with large size cartridge displacements, will optimize operation for the lowest noise level in the smallest envelope.
- The low speed 600 RPM (400 RPM for mobile), low pressure, high viscosity 3900 SUS (7400 SUS for mobile) allow application in cold environments with minimum energy consumption and without seizure risk.
- The low ripple pressure ± 29 PSI reduces piping noise and increases life time of other components in the circuit.
- The high resistance to particle contamination because of the double lip vane increases pump life.
- The large variety of options (cam displacement, shaft, porting, piston section controls) allows customized installation.

C - COMPENSATOR

The "C" and "F" pressure compensator control allows the pump to deliver full volume from the outlet port until the pressure rise to the value set by the control. The control then reduces the pump volume to that required by the system mobile maintening the preset pressure at the outlet port.

pressure. The remote relief is connected to the vent port. The pressure may be controlled at any level below the compensator pressure setting. The vent port may also be used to remotely vent-off the compensator for starting.

L - LOAD SENSING COMPENSATOR

The "L" compensator is used for load sensing circuits and is a true load sensor. This is the "F" compensator with a pin in the compensator spool (see enlarged view). The pin prevents pilot flow from entering the circuit which will eliminate creeping of the load. The "L" compensator will let the pump deliver a constant flow rate to the circuit by providing an adjustable ΔP across the customers orifice or valve. The pump will operate at 247 - 406 PSI above "Load Pressure".

X - VENTED COMPENSATOR BY ELECTRIC VALVE

The "X" compensator is used in application requiring vent off on compensator at starting or at other time of the cycle. The piston cartridge reduce the volume for maintening the pressure at the differential pressure sitting.

	HYDRAULIC FLUIDS					
FLUIDS RECOMMENDED FLUIDS	Petroleum based antiwear R & O fluids. These fluids are the recommended fluids for T6 series pumps. Maximum catalog ratings and performance data are based on operation with these fluids. These fluids are					
ACCEPTABLE ALTERNATE FLUIDS	covered by DENISON Hydraulics HF-0 and HF-2 specification. The use of fluids other than petroleum based antiwear R & O fluids, requires that the maximum ratings of the pumps will be reduced. In somes cases the minimum replenishment pressures must be increased. Consult specific sections for more details.					
VISCOSITY	Max (cold start, low speed & pressure)3900 (SUS)Max (cold start, low speed & pressure) (for mobile)7400 (SUS)Max (full speed & pressure)500 (SUS)Optimum (max. life)140 (SUS)Min (full speed & pressure for HF-1, HF-3, HF-4 & HF-5 fluids)90 (SUS)Min (full speed & pressure for HF-0 & HF-2 fluids)60 (SUS)					
VISCOSITY INDEX	90° min. higher values extend range of operaring temperatures. Maximum fluid temperature (θ) °F HF-0, HF-1, HF-2 HF-3, HF-4 + 122° HF-5 + 158° Biodegradable fluids (esters & rapeseed base)					
FLUID CLEANLINESS	The fluid must be cleaned before and during operation to maintain contamination level of NAS 1638 class 8 (or ISO 18/14) or better. Filters with 25 micron (or better, $\beta 10 \ge 100$) nominal ratings may be adequate but do not guarantee the required cleanliness levels. Suction strainers must be of adequate size to provide minimum inlet pressure specified. 100 mesh (149 micron) is the finest mesh recommended. Use oversize strainers or omit them altogether on applications which require cold starts or use fire resistant fluids.					
OPERATING TEMPERATURES AND VISCOSITIES	Operating temperatures are a function of fluid viscosities, fluid type, and the pump. Fluid viscosity should be selected to provide optimum viscosity at normal operating temperatures. For cold starts the pumps should be operated at low speed and pressure until fluid warms up to an acceptable viscosity for full power operation.					
WATER CONTAMINATION IN THE FLUID	 Maximum acceptable content of water. 0,10 % for mineral base fluids. 0,05 % for synthetic fluids, crankcase oils, biodegradable fluids. If amount of water is higher then it should be drained off the circuit. 					

SHAFTS COUPLINGS AND FEMALE SPLINES SPLINES

KEYED SHAFTS

NOTE

SHAFT LOADS

SHAFT BEARING LIFE (TYPICAL) WITHOUT EXTERNAL LOAD

• The shafts will accept a maximum misalignment of .003 TIR when the pump is foot mounted and .0015" when flange mounted. The angular alignment of two spline axes must be less than $0,1^{\circ}$ (.0001" /mm).

• The coupling spline must be lubricated with a lithium molydisulfide grease or a similar lubricant.

• The coupling must be hardened to a hardness between 27 and 45 R.C.

• The female spline must be made to conform to the Class 1 fit as described in SAE-J498b (1971). This is described as a Flat Root Side Fit.

DENISON Hydraulics supplies the T6H series keyed shaft pumps with high strength heat-treated keys. Therefore, when installing or replacing these pumps, the heat-treated keys must be used in order to insure maximum life in the application. If the key is replaced it must be a heat-treated key between 27 and 34 R.C. hardness. The corners of the keys must be chamfered from .030 to .040 at 45° to clear radius in the key way.

Alignment of keyed shafts must be within tolerances given for splined shafts.

These products are designed primarily for coaxial drives which do not impose axial or side loading on the shaft. Consult the typical curve below for the theorical life. For specific applications which may include vibration and stock during operation of the machine or external load on the drive shaft. Please consult your local DENISON Hydraulics office.

Parker Hannifin Denison Vane Pump Division Vierzon - France

ORDERING CODE & OPERATING CHARACTERISTICS - T6H20B - T6H20C SERIES T6H20B -T6H20C -Model No. •••• Series and capacity P1 Modification (rotating group) Porting combination $2.62 \text{ in}^3/\text{rev}.$ Depend on the rotation - See page 26 Cam ring P2 (Delivery at 0 PSI & 1200 RPM) Variables port T6H20B T6H20C Dia Code B02 = 1.84 GPM B03 = 3.11 GPM *03 = 3.42 GPM *05 = 5.45 GPM 1" P2 0 3/4" P2 1 B04 = 4.06 GPM*06 = 6.75 GPM $B05 = 5.04 \text{ GPM} \\B06 = 6.28 \text{ GPM} \\B07 = 7.13 \text{ GPM} \\B08 = 7.89 \text{ GPM}$ *08 = 8.37 GPM Variables flanges connections *10 = 10.81 GPM 4 bolts SAE flange (J518c) *12 = 11.76 GPM 0 = UNC thread *14 = 14.58 GPM M = metric thread)B10 = 10.08 GPM *17 = 18.48 GPM **Control accessories** B12 = 13.00 GPM *20 = 20.23 GPM B15 = 15.85 GPM *22 = 22.29 GPM 0 = Maxi flow9 = 90 % maxi flow *25 = 25.14 GPM 8 = 80 % maxi flow *28 = 28.15 GPM 7 = 70 % maxi flow *31 = 31.70 GPM 6 = 60 % maxi flow Type of shaft -5 = 50 % maxi flow 1 = keyed (SAE BB) 3 =splined (SAE C) 4 = splined (SAE BB) 5 = keyed (SAE C)Control Direct. of rotation (view on shaft end) C = Compensator R = clockwiseF = RC pilot operated compensator L = RC pilot operated compensator L = counter-clockwise "load sensing" Seal class $X^* = RC$ pilot operated compensator with vent 1 = S1 (BUNA N) 5 = S5 (VITON) valve 24 VDC * Use with external drain only **Design letter**

B = T6H20B

C = T6H20C

* = 0 = Indust. uni-rotational / B = Indust. bi-rotational / M = Mobile bi-rotational

Connection (drain + vent.)0 = ext. drain + UNF thread2 = ext. drain + BSPP thread3 = int. drain + UNF thread4 = int. drain + BSPP thread

OPERAT	ING CH	IARACTERISTIC	S - TYPICA	AL [115 S	SUS]			4 = int. drain -	+ BSPP thread	
Pressure	Series	Volumetric	Flo	ow qVe [C	GPM], n =	1800 RP	М	Input pov	ver P [HP], n =	1800 RPM
port		Displacement Vi	p = 0 PSI	p = 20	00 PSI	p = 43	50 PSI	p = 100 PSI	p = 2000 PSI	p = 4350 PSI
	B02	.35 in ³ /rev	2.76	2.	33	1.	80	0.74	4.02	8.10
	B03	.60 in ³ /rev	4.66	4.	4.23		70	0.85	6.24	12.93
P2 T6H20B	B04	.78 in ³ /rev	6.09	5.	66	5.	13	0.94	7.90	16.55
	B05	.97 in ³ /rev	7.56	7.	13	6.	60	1.02	9.62	20.29
	B06	1.21 in ³ /rev	9.42	8.	99	8.	46	1.13	11.79	25.00
	B07	1.37 in ³ /rev	10.70	10	.27	9.	74	1.20	13.29	28.26
	B08	1.52 in ³ /rev	11.84	11	.41	10	.88	1.27	14.62	31.15
	B10	1.94 in ³ /rev	15.12	14	.69	14	14.16		18.45	39.48
	B12	2.50 in ³ /rev	19.50	19	.07	18	18.54		23.55	50.58
	B15	3.05 in ³ /rev	23.78	23	.35	$22.88^{1)}$		1.97	28.55	57.35 ¹⁾
			p = 0 PSI	p = 2000 PSI		p = 3500 PSI		p = 100 PSI	p = 2000 PSI	p = 3500 PSI
				Indust.	Mobile	Indust.	Mobile			
	*03	.66 in ³ /rev	5.14	3.85	3.61	2.95	-	2.11	8.45	13.38
	*05	1.05 in ³ /rev	8.18	6.89	6.65	5.99	5.56	2.29	12.00	19.59
	*06	1.30 in ³ /rev	10.13	8.84	8.60	7.94	7.51	2.40	14.28	23.57
	*08	1.61 in ³ /rev	12.55	11.26	11.02	10.36	9.93	2.54	17.11	28.53
	*10	2.08 in ³ /rev	16.22	14.93	14.69	14.03	13.60	2.76	21.38	36.00
P2	*12	2.26 in ³ /rev	17.64	16.35	16.11	15.45	15.02	2.84	23.05	38.92
T6H20C	*14	2.81 in ³ /rev	21.88	20.59	20.35	19.69	19.26	3.09	27.99	47.56
	*17	3.56 in ³ /rev	27.73	26.44	26.20	25.54	25.11	3.43	34.81	59.51
	*20	3.89 in ³ /rev	30.34	29.05	28.81	28.15	27.42	3.58	37.86	64.85
	*22	4.29 in ³ /rev	33.43	32.14	31.90	31.24	30.81	3.76	41.47	71.16
	*25	4.84 in ³ /rev	37.71	36.42	36.18	35.52	35.09	4.01	46.46	79.90
	*28	5.42 in ³ /rev	42.23	40.94	40.70	40.32^{2}	39.94 ²⁾	4.27	51.74	76.73 ²⁾
	*31	6.10 in ³ /rev	47.56	46.27	46.03	45.65^{2}	45.27^{2}	4.58	57.95	86.06 ²⁾

$^{II}B15 = 4060 PSI max. int. ^{2}028 - 031 = 3000 PSI max. int.$

- Not to use because internal leakage greater than 50% theoretical flow.

Parker Hannifin Denison Vane Pump Division Vierzon - France

Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Parker Hannifin Denison Vane Pump Division Vierzon - France

Do not operate pump more than 5 seconds at any speed or viscosity if internal leakage is higher than 50% of theoretical flow.

Parker Hannifin Denison Vane Pump Division Vierzon - France

HYDROMECHANICAL POWER LOSS (TYPICAL)

"P2" CARTRIDGE

OUTLET FLOW

DEPEND ON THE ROTATION

T6H20B - T6H20C T6H29B - T6H29C

CCW RO	TATION	5	75 4 4 4	CW RO	TATION	FIXED POR	175 49-5
	S O D D D D D D D D D D D D D D D D D D	S DZ OZ	5 P2 P2 03	210 210 210		PT 0 5	P1 0 5 13
5 P2 04	2 5 05	500 P2 500 P2 05	500 PZ 500 PZ 07	P10 5 22	PTO P2 15		P1005 P2

T6H29D

